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a b s t r a c t 

Background and Objective: In recent years, some clinical parameters, such as the volume of gray matter 

(GM) and cortical thickness, have been used as anatomical features to identify Alzheimer’s disease (AD) 

from Healthy Controls (HC) in some feature-based machine learning methods. However, fewer image- 

based feature parameters have been proposed, which are equivalent to these clinical parameters, to de- 

scribe the atrophy of regions-of-interest (ROIs) of the brain. In this study, we aim to extract effective 

image-based feature parameters to improve the diagnostic performance of AD with magnetic resonance 

imaging (MRI) data. 

Methods: A new subspace-based sparse feature learning method is proposed, which builds a union-of- 

subspace representation model to realize feature extraction and disease identification. Specifically, the 

proposed method estimates feature dimensions reasonably, at the same time, it protects local features 

for the specified ROIs of the brain, and realizes image-based feature extraction and classification auto- 

matically instead of computing the volume of GM or cortical thickness preliminarily. 

Results: Experimental results illustrate the effectiveness and robustness of the proposed method on fea- 

ture extraction and classification, which are based on the sampled clinical dataset from Peking University 

Third Hospital of China and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. The extracted 

image-based feature parameters describe the atrophy of ROIs of the brain well as clinical parameters but 

show better performance in AD identification than clinical parameters. Based on them, the important 

ROIs for AD identification can be identified even for correlated variables. 

Conclusion: The extracted features and the proposed identification parameters show high correlation with 

the volume of GM and the clinical mini-mental state examination (MMSE) score respectively. The pro- 

posed method will be useful in denoting the changes of cerebral pathology and cognitive function in AD 

patients. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

As a chronic neurodegenerative disease, Alzheimer’s disease

AD) can be diagnosed from the change of cerebral cortex [1,2] .

ith the development of medical imaging technology, the im-

ges of cerebral cortex are widely used in AD clinical diagnosis.
� Research was supported in part by the “National Natural Science Foundation of 

hina (NSFC)” ( No. 61603077, No. 61305033, No. 41776204) and “Beijing Municipal 

ducation Commission” ( No. KM201611417014). 
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ecently, working as computer aided disease diagnosis technolo-

ies, many image processing methods and machine learning meth-

ds have been proposed to analyze magnetic resonance imaging

MRI) scanned data for early AD identification [3–20] . Useful in-

ormation for diagnosis needs to be extracted from high dimen-

ion MRI data during machine learning. However, the problem of

igh dimensionality of MRI data with relatively small number of

ubjects is a widespread concern for most machine learning meth-

ds. Thus, many feature extractions based dimensionality reduction

echniques have been applied. 

Typically, there are two types of feature dimensionality reduc-

ion methods proposed for AD identification. One is linear-based

ubspace dimensionality reduction method [3–7] , such as principal

https://doi.org/10.1016/j.cmpb.2019.105290
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Table 1 

Demographics of the subjects. 

AD HC 

Size 198 236 

Female/Male 110/88 120/116 

Age 72.61 ± 8.15 71.58 ± 7.32 

Education 11.1 ± 5.78 14.18 ± 3.34 
a MMSE 17.84 ± 6.11 29.06 ± 1.02 
b CDR 0.5, 1 0 

a MMSE: mini-mental state examination. 
b CDR: clinical dementia rating. 
component analysis (PCA) [3] , Fishers linear discriminant analysis

(LDA) [4] and locality preserving projection (LPP) [21] combined

with sparse analysis method [5] . Those high dimensional MRI data

are projected into a low-dimensional subspace or a locally linear

subspace to reduce the dimension of MRI data. PCA is an orthog-

onal transformation which convert observations samples of possi-

bly correlated variables into linearly uncorrelated subspace called

principal components (PCs). If there are n observations with p vari-

ables, then the number of distinct PCs is min (n − 1 , p) . LDA is

closely related to PCA in that they both look for linear combina-

tion of variables to best interpret the data. But LDA attempts to

model the difference between classes data while PCA attempts to

model the similarity within classes. 

The other type of dimensionality reduction method is nonlin-

ear technique, such as manifold learning methods [15–17] and

multiple-kernel based methods [18,19] . These methods either pro-

vide an embedded mapping between high-dimensional space and

low-dimensional space or give a distance measurement based on

visualization. For example, manifold alignment is employed to

learn joint low-dimensional manifold for 1.5T and 3T MR im-

age intensity features, which are built by an adaptation of Lapla-

cian eigen-maps [16] . Furthermore, statistical-based learning meth-

ods [22–25] and Topology-based methods [26] are also used for

dimensionality reduction. 

Considering that AD reflects anatomical atrophy or functional

neurodegeneration in some regions-of-interest (ROIs) of brain,

such as Amygdala, Hippocampus, Parahippocampal gyrus, Cau-

date, Fusiform gyrus, Thalamus, medial temporal lobe, etc [9] , the

change of their volumes and their localized shape deformations

(i.e. the volume of gray matter and cortical thickness) have been

used as anatomical features to distinguish AD from Healthy Con-

trols (HC) [4,27] in most feature dimensionality reduction meth-

ods. However, these features are susceptible to the preprocessing

results, and the preprocessing procedure may increase the com-

plexity of feature learning. Meanwhile, for those PCA based meth-

ods, each principal component in PCA is a linear combination of

all original variables. The number of PCs (i.e. feature dimension)

is generally determined by cross-validation based methods, which

may effect the identification results. Especially, for some ROIs with

relative smaller volumes, some useful features are easier to lost

if an unreasonable feature dimension is estimated. Recently, a lo-

cal low-rank filtering method, called compartmental low-rank ap-

proximation (CLORA) method, is proposed for denoising practical

magnetic resonance spectroscopic imaging (MRSI) data [28] . It per-

forms local low-rank filtering compartmentally to protect weak

and/or localized signals from being filtered out by global low-rank

approximation. 

In this paper, we proposed a compartmental sparse feature ex-

traction and classification method for AD identification. Some pre-

liminary accounts of this study were presented in our early con-

ference papers [29,30] . The main contributions of this study are as

follows: 

(a) We build a union-of-subspace model with the assumption

that each atlas-based ROIs of brain has similar neurodegen-

eration characteristics for AD. The proposed method parti-

tions the T1-weighted MRI data into several compartments

based on the local spatial support and estimates their cor-

responding feature dimensions using Singular Value Decom-

position (SVD). It is worthwhile to note that local features

with smaller volumes may be protected well based on this

compartmental feature dimension estimation method. 

(b) We perform compartmental sparse feature extraction by us-

ing sparse principal component analysis (SPCA) [31] method

with the estimated feature dimensions to obtain sparse fea-

tures for different ROIs. More specially, the extracted sparse
principal components (SPCs) for each compartment reflect

the volume changes of the specified ROIs of the brain. 

(c) We propose a modified elastic net logistic regression (ENLR)

method, called EN-ROC (i.e. EN combined with receiver op-

erating characteristic curve) method, as classifier after di-

mensionality reduction. The identification parameters ex-

tracted from EN-ROC method show better performance in

AD identification. 

It is noted that even some deep learning classifiers have shown

ood performance on AD classification [32,33] , it is difficult to

resent interpretability on the extracted features or classification

esults because they incorporate feature extraction and classifier

earning into an unified framework that is typically regarded as

lack boxes [34] . Furthermore, in this work, we aim to extract

ffective image-based features, which are comparable with those

linical parameters, to describe the atrophy of ROIs of the cere-

rum. Because of these reasons, deep learning classifiers will not

e discussed in this work. 

. Method 

The framework of the proposed method is shown in Fig. 1 . First,

mage preprocessing is used to perform segmentation on the orig-

nal MRI T1-weighted images. Second, based on the derived ROIs

asks, compartmental model is built to estimate feature dimen-

ions of different ROIs. Third, the compartmental sparse feature ex-

raction with estimated feature dimensions is performed on differ-

nt ROIs to extract features and corresponding projection vectors.

inally, the test samples are projected into feature space and iden-

ified based on EN-based classifiers. 

.1. Materials and image preprocessing 

In this study, experimental data includes two parts: dataset

 �1 } is sampled from Peking University Third Hospital of China,

nd dataset { �2 } is downloaded from Alzheimer’s Disease Neu-

oimaging Initiative (ADNI) website ( http://www.loni.ucla.edu/

DNI ). ADNI website was launched in 2003 by the National

nstitute on Aging (NIA), the National Institute of Biomedical

maging and Bioengineering (NIBIB), the Food and Drug Admin-

stration (FDA), private pharmaceutical companies and non-profit

rganizations. Dataset { �1 } includes 131 AD subjects and 131 HC

ubjects, which are sampled on a SIEMENS Trio 3T scanner with

he acquisition parameters T R/T E = 2350 / 3 . 44 ms, voxel size =
 × 1 × 1 mm 

3 . These data is approved by the local Institutional

eview Board. And dataset { �2 } includes 67 AD subjects and 105

C subjects, which are sampled from different 3T scanners (i.e. GE,

IEMENS, PHILIP) and are used to illustrate the effectiveness and

obustness of the proposed method. Both of these two datasets are

ll T1 Magnetization Prepared Rapid Gradient Echo (MPRAGE) data.

1) Subjects 

The selected subjects follow the general inclusion/exclusion cri-

eria as described in Table 1 , i.e. the MMSE score of each HC

http://www.loni.ucla.edu/ADNI
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Fig. 1. The Framework of the proposed method. 

Fig. 2. Seven ROIs masks in a slice view. 
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ubject is between 26 and 30 with clinical dementia rating (CDR)

f 0. And the MMSE score of each AD subject is between 10 and

4 with the CDR of 0.5 or 1. 

2) Image preprocessing 

All datasets are reviewed for quality and further preprocessed

ith SPM8 [35] that is running under a Windows MATLAB plat-

orm by the following steps. 

First, all T1-weighted images are segmented into GM, white

atter (WM) and cerebrospinal fluid (CSF) maps in the ‘realigned’

nd ‘warped’ template by using the ‘new segment’ toolbox in
PM8. S
Second, 45 ROIs masks are derived by using WFU Pick-

tlas [36] based on the automated anatomical labeling

AAL) [37] template using GM data. In this study, both left

nd right structures of cerebrum in AAL template are combined

nto one to reduce the number of ROIs from 90 to 45. Each mask

s used as the spatial support of indicator function W q ( r ) for its

orresponding compartment as described in (1) . For example,

even ROIs masks are shown in a slice view in Fig. 2 , which

re used as spatial support for seven corresponding indicator

unctions. These ROIs are selected to show experimental results in
ection 3 . 
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(d) Repeat the step (a) and the step (b) until convergence. 
Then the following feature dimension estimation is performed

based on these simply preprocessed data. 

2.2. Proposed method 

1) Compartmental feature dimension estimation 

In this study, we use CLORA model [28] as an union-of-

subspace representation for the ROIs of the brain. There are two

fundamental assumptions in CLORA model. First, we assume that

the measured MPRAGE brain data can be partitioned into several

compartments, in which each compartment corresponds to one

atlas-based ROI. Second, we assume that each compartment has

similar neurodegeneration characteristics for AD. This assump-

tion is valid because each atlas-based ROIs generally reflects

similar anatomical atrophy or functional neurodegeneration, e.g.

Hippocampus is mainly associated with memory. Under these

assumptions, the sampled MRI brain data can be partitioned

into different compartments and presented as the following

compartmental model: 

S (r ) = 

Q ∑ 

q =1 

W q (r ) � S (q ) (r ) , (1)

where � denotes matrix dot product, r denotes the 3-D spatial

coordinates, S (r ) is the measured MRI data of the whole brain or

specified brain region, Q is the type of different ROIs (i.e. number

of compartments), W q ( r ) is the corresponding indicator function

of S ( q ) ( r ) and can be derived from 45 ROIs masks in image pre-

processing procedure (i.e. W q (r ) = 1 for r ∈ D q and W q (r ) = 0 for

others, where D q represents the spatial support of S ( q ) ( r )), S ( q ) ( r )

is the q -th compartment and can be approximated using SVD as 

S (q ) = 

k q ∑ 

l=1 

σ (q ) 
l 

u 

(q ) 
l 

v (q ) T 
l 

, (q = 1 , 2 , · · · , Q ) , (2)

where σ (q ) 
l 

, u 
(q ) 
l 

and v (q ) 
l 

are the singular value, left singular

vector, and right singular vector of S ( q ) , respectively. 

Based on this compartmental model, we use k q as the esti-

mated feature dimension for the q -th compartment, i.e. the num-

ber of PCs of S ( q ) in SPCA method. In order to obtain a reasonable

feature dimension while protecting local features, we maximize

k q for each compartment to maintain most features of S ( q ) , i.e. if

σ l > D q and σl+1 < D q , where D q is the threshold value of the sin-

gular value distributions for the q th compartment. Specifically, for

those specified brain regions with several ROIs, most local features

with smaller volumes may be protected well by using this com-

partmental feature dimension estimation method. This point will

be illustrated in Section 4 as shown in Fig. 6 . In this study, AHP

(Amygdala+Hippocampus+Parahippocampal gyrus) is a combined

specified brain region, in which local features for each independent

ROIs (i.e. Amygdala, Hippocampus, or Parahippocampal gyrus) have

lower dimensionality. As Fig. 6 shows, the classification accuracy

for AHP or each independent ROIs based on the proposed method

is higher than that of unreasonable preset fixed values of k = 5 , 10

and is comparable with that of other higher fixed values of k =
20 , 50 , 80 . Thus, we may analyze the effectiveness of a single ROI

or the combined ROIs on AD progression by using the estimated

feature dimension and SPCA method on different compartments. 

In this study, we obtain 45 individual compartments by mask-

ing derived ROIs on the segmented GM data separately. It is nec-

essary for each compartment to be preprocessed further for the

following feature extraction. As discussed in [29] , in order to re-

duce the high dimension of 3D MRI images, all compartment are

summed along the direction of axial to obtain 2-D compartmen-

tal data. Then the 2-D compartmental data are reshaped to a

row vector x ( q ) . For all measured n samples, the q -th compart-

mental observation matrix X 

( q ) for the following feature extraction
an be built as X 

(q ) = [ x 1(q ) ; · · · ; x i (q ) ; · · · ; x n (q ) ] , (i = 1 , · · · , n ) . For

implicity, we use X denotes X 

( q ) in the rest of this paper. In this

tudy, we mainly aim to do 2D feature extraction, 3D feature ex-

raction work will be discussed in the future work. 

2) Sparse feature extraction 

As we know, PCA is a low-rank approximation method, which

s aiming to find linearly uncorrelated orthogonal basis and PCs to

educe the dimension of matrix. It usually can be computed ac-

ording to SVD or Eigen-Decomposition (ED). Let X ∈ R 

n ×p be cen-

ered, where n and p are the numbers of samples and variables

eparately. Let the SVD of X be U 0 D 0 V 

T 
0 . Then we can obtain the

inearly uncorrelated variables (i.e. PCs) of X in the subspace as

 0 = U 0 D 0 = XV 0 . The columns of U 0 are called the left-singular

ectors of X , and the columns of V 0 are the corresponding projec-

ion operators of PCs. The diagonal elements of D 0 are correspond-

ng sample variances of PCs. Usually, the first k ( k � min ( n, p )) PCs

hich corresponding to the biggest k variances are chosen to rep-

esent the matrix X , thus the dimensionality reduction is achieved.

or the orthogonality of U 0 , D 0 and V 0 , the PCs are uncorrelated

o each other and the elements of V 0 are typically nonzero. Each

C is a linear combination of all p variables and the projection vec-

ors are typically nonzero, which often makes PCA difficult to inter-

ret the derived PCs [31] . For feature extraction, PCA only selects

t most n variables if n < p . And if there is a group of variables

hich are correlated with each other, PCA only selects one vari-

ble randomly from the group. 

To overcome those drawbacks of PCA, Zou et al. proposed SPCA

ethod [31] , where the PCA was formulated as a regression-type

ptimization problem by combining ridge regression and least ab-

olute shrinkage and selection operator (LASSO) regression [38] .

PCA is an EN-based [39] sparse feature extracting method, which

an be formulated as the following two-step iterative optimization

roblem: 

in 

A , B 

n ∑ 

i =1 

‖ x 

i − AB 

T x 

i ‖ 

2 + λ1 

k ∑ 

j=1 

‖ β j ‖ 

2 + 

k ∑ 

j=1 

λ2 , j ‖ β j ‖ 1 , 

sub j. to A 

T A = I k ×k , (3)

here x i (i = 1 , · · · , n ) is the vector of the i -th row of matrix X,

 is a transition matrix, B = [ β1 , · · · , βk ] , β j ∈ R 

p ( j = 1 , · · · , k ) , is

he sparse projection matrix of PCs, k is the number of selected

Cs, λ1 and λ2, j are non-negative Lagrangian penalizing parame-

ers. λ1 is used to overcome the over-fitting problem, and λ2, j is

sed to control the sparsity of β j , i.e. the larger λ2, j the more

parse β j . ‖ · ‖ 2 and ‖ · ‖ 1 are � 2 and � 1 norm of a vector re-

pectively. Then SPCs of X is 

 = XB . (4)

The sparse projection matrix B can be obtained by solving

3) iteratively as described in [31] : 

(a) Let A = [ α1 , · · · , αk ] , α j ∈ R 

p , start as the project loadings of

X (i.e. the first k of V 0 ) or a random matrix. 

(b) Given a fixed A , the optimal B can be obtained by solving

the following EN regression problem, 

arg min 

B 

k ∑ 

j=1 

‖ X α j − X β j ‖ 

2 + λ1 ‖ β j ‖ 

2 + λ2 , j ‖ β j ‖ 1 . (5)

(c) For a fixed B , the penalty part in (3) can be ignored, 

min 

A 

n ∑ 

i =1 

‖ x 

i − AB 

T x 

i ‖ 

2 = ‖ X − XBA 

T ‖ 

2 , 

sub j. to A 

T A = I k ×k . (6)

Then the solution of (6) can be obtained by computing the

SVD of X 

T XB = UDV 

T 
, and update A = UV 

T . 
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classifiers that have been described in 3) of Section 2.2 . 
Thanks to EN regression technique, the following factors help

PCA overcome limitations of PCA. (1) SPCA method will poten-

ially select all p variables as features when it is applied to high

imension and relative low sample size data, i.e. p � n . (2) SPCA

ethod will identify important variables while eliminate trivial

nes based on the derived SPCs. (3) SPCA method is able to select

roup-variables due to the grouping effects of EN [39] , i.e. SPCA is

ble to identify important variables with high explained variance

ven for correlated variables. The grouping effects of EN mean that

he absolute value of regression coefficients of a group of highly

orrelated variables tend to be equal, which makes all correlated

ariables can be selected. 

Based on these factors, SPCA method can extract important

ariables correctly when there are correlated variables, which

akes the interpretation of the derived SPCs become easier [31] .

hese points will be illustrated in Fig. 9 in Section 4 . 

3) Sparse classification 

After feature extraction, classifier is used for disease identifica-

ion, such as SVM [3,40,41] , EN [39] and LASSO [42] . Considering

he comparison results discussed in [43] , we use EN based method

s classifier on the dimension reduced data. 

Based on the estimated feature dimensions, we can obtain SPCs

f the training data as Z = XB . For a test sample y ∈ R 

p of the c -

h class, its corresponding SPCs can be represented as y te = B 

T y ,

hich is used as the extracted sparse feature for the following

dentification. 

Let C be the number of class, n c (c = 1 , . . . , C) be the number

f samples in the c -th class, 
∑ C 

c=1 n c = n , and ς c is the label of

he c -th class. In this study, based on ENLR method [39] , we built

he following three different classifiers to identify AD from HC: EN-

RI(i.e. original ENLR) [39] , EN-SPC (i.e. EN combined with sparse

rinciple components) [29] , and EN-ROC [44] . 

(a) EN-ORI 

In the statistical learning theory, the classification problem

can be formulated as a linear regression model. Considering

ENLR is a regression model [39] , we use it as a classifier di-

rectly. Given Z and their label v = [ v 1 , · · · , v n ] T ( v i ∈ { ς c } C c=1 
).

Without loss of generality, v is centered and Z is standard-

ized. The identification can be performed according to the

following rules: 

ˆ c = arg min 

c 
‖ y T te ̂  η − ς c ‖ 

2 , (7)

where ˆ η is the projection vector of SPCs, 

ˆ η = arg min 

η
‖ v − Z η‖ 

2 + μ1 ‖ η‖ 

2 + μ2 ‖ η‖ 1 , (8)

where μ1 and μ2 are non-negative Lagrangian parameters

the same as (3) . 

(b) EN-SPC 

Unlike EN-ORI, EN-SPC formulates the regression represen-

tation based on the sparse linear combination of training

samples rather than training labels [29] , i.e., the test sample

is represented by an over-complete dictionary Z with sparse

basis. Considering the noises and interferences, the classifier

can be expressed as follows: 

ˆ c = arg min 

c 
‖ y te − Z 

T φc ( ̂  γ ) ‖ 

2 , (9)

where ˆ γ = [ ̂  γ1 , 1 , · · · , ˆ γ1 ,n 1 
, · · · , ˆ γc, 1 , · · · , ˆ γc,n c , · · · , ˆ γC, 1 , · · ·

ˆ γC,n C 
] T is a vector of linear regression coefficients,

φc ( ̂  γ ) ∈ R 

n includes nonzero items of ˆ γ that are asso-

ciated with c -th class, and φc ( ̂  γ ) = [0 , 0 , · · · , ˆ γc, 1 , · · · ,

ˆ γc,n c , 0 , · · · , 0] T is a sparse basis vector. 

ˆ γ = min 

γ
‖ y te − Z 

T γ ‖ 

2 + λ3 ‖ γ ‖ 

2 + λ4 ‖ γ ‖ 1 , (10)
where λ3 and λ4 are non-negative Lagrangian parame-

ters, which are chosen based on the discrepancy princi-

ple although many other regularization parameter selection

schemes can be used. Classification results with the effect of

different λ4 are shown in Section 3 . 

For Z ∈ R 

n ×k with k � n , EN-SPC classifier is an ENLR based

sparse classification method, which is different from LASSO

expression in [42] . 

(c) EN-ROC 

The ROC analysis provides a method to select possibly op-

timal models, in which the classifier boundary between

classes is determined by a threshold value. ROC curve de-

scribes a relationship between the true positive rate (TPR)

and the false positive rate (FPR) at various threshold set-

tings, which is used to illustrate the diagnostic ability of a

binary classifier system. Based on (10) , we modify the EN-

SPC classifier by choosing an optimal threshold value in ROC

curve [44] . Define an identification ratio as 

ρc = ‖ Z 

T φc ( ̂  γ ) ‖ 

2 / ‖ Z 

T ˆ γ ‖ 

2 , (11)

where the description of φc ( ̂  γ ) ∈ R 

n is shown in (9) . Then

the modified identification rule can be described as 

ˆ c = 

{
ς p if ρc > 

ˆ δc 

ς n otherwise 
, (12) 

where ς p and ς n are the labels of positive instances and

negative instances respectively. If the discrimination thresh-

old value (i.e. the identification ratio ρc ) is varied from 0 to

1 continuously, we can obtain a ROC curve to illustrate the

diagnostic ability of the classifier. And the optimal threshold

value ˆ δc in ROC curve be defined as the maximum difference

between TPR and FPR, 

ˆ δc = arg max 
δc 

( TPR δc 
− FPR δc 

) . (13) 

In this study, AD is set as a positive instance and HC is set

as a negative instance. Then φc ( ̂  γ ) in (11) is associated with

AD. 

4) Summary of the proposed method 

The proposed method performs feature dimension estimation,

eature extraction and classification compartmentally based on a

nion-of-subspace model representation. The data processing steps

nvolved are summarized as follows. 

(a) Derive atlas-based spatial masks W q ( r ) in (1) by using new

segment toolbox in SPM8 and WFU_PickAtlas based on AAL

template. 

(b) Perform compartmental low-rank approximation by using 

SVD to estimate feature dimensions for each compartment

S ( q ) in (2) . 

(c) Build the observation matrix X using all row vectors

x i (q ) , (i = 1 , · · · , n ) of the q th compartment. 

(d) Perform sparse feature extraction for each compartmen-

tal data by solving the optimization problem in (3) . More

specifically, for p � n , (5) can be solved by a fast soft-

thresholding algorithm as the following [31] : 

β(q ) 
j 

= 

(
| ξ | − λ2 , j 

2 

)
+ 

Sign (ξ ) , (14) 

where ξ = αT 
j 
X 

(q ) T X 

(q ) , (x ) + denotes max (0, x ), Sign( · ) is

the sign function. 

(e) Obtain the identification results by using three different
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Table 2 

Correlation between different parameters of hippocampus ∗ . 

Volume of GM MMSE score || y te || 
2 ρc 

Volume of GM 1 0.393 0.936 0.5 

MMSE score 0.393 1 0.586 0.776 

|| y te || 
2 0.936 0.586 1 0.718 

ρc 0.5 0.776 0.718 1 

∗ p < . 001 . 

Table 3 

Classification results of different classifiers–Accuracy. (Boldface 

denotes the highest classification ratio in each ROIs.). 

ROIs Accuracy 

SVM-G SVM-L EN-ORI EN-SPC EN-ROC 

Amyg 0.731 0.750 0.711 0.702 0.739 

Hippo 0.844 0.854 0.833 0.875 0.878 

ParaH 0.834 0.852 0.816 0.843 0.868 

AHP 0.841 0.860 0.827 0.868 0.887 

Caud 0.732 0.718 0.720 0.717 0.747 

Put 0.717 0.682 0.664 0.694 0.705 

Thal 0.707 0.734 0.668 0.713 0.727 

Fusif 0.604 0.638 0.589 0.664 0.656 

All 0.846 0.836 0.800 0.831 0.864 
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I  
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3. Results 

In this study, in order to avoid any possible bias during sam-

ples partitioning, 50 times Monte-Carlo simulations were carried

out to: 

(a) estimate compartmental feature dimension k and select La-

grangian parameters λ2, j and λ4 in (14) and (10) , 

(b) demonstrate the performance of three feature extraction

methods (i.e. PCA, LDA, SPCA), 

(c) demonstrate the performance of four classifiers (i.e. SVM,

EN-ORI, EN-SPC and EN-ROC). 

The final result was the average of the results of 50 times.

155 AD subjects and 155 HC subjects were randomly selected for

training while remaining for testing during each Monte-Carlo sim-

ulation. In this study, 45 derived ROIs and 2 combined ROIs (i.e.

AHP and whole cerebral GM) were all trained and tested. Consider-

ing the following previous studies [45–47] , we selected 9 ROIs that

are associated with memory function to show experimental results,

i.e. Amygdala (Amgy), Caudate (Caud), Fusiform (Fusif), Hippocam-

pus (Hippo), Parahippocampal gyrus (ParaH), Putamen (Put), Thala-

mus (Thal), AHP and whole cerebral GM (All). According to the di-

agnostic experience and previous studies [9] , we hypothesized that

Hippocampus, Parahippocampal gyrus and medial temporal lobe

could achieve the best performance. 

First, we selected the feature dimension k in (3) for each com-

partment. In this work, we chose k q in (2) as the estimated feature

dimension with the threshold value D q = 1 e − 10 for the q -th com-

partment. Thus, the selected feature dimension k q for the specified

ROIs were marked as shown in Fig. 3 . 

Then, 50 times Monte-Carlo experiment were used to address

the values of two Lagrangian penalizing parameters λ2, j in (14) and

λ4 in (10) . In this study, for p � n , (5) could be solved by a

fast soft-thresholding algorithm as described in (14) , which only

needed to select Lagrangian penalizing parameters λ2 . The solution

of (10) was as same as (5) . Thus we only discussed the selection of

λ2, j and λ4 in this section. As described in Section 2 , λ2, j effects the

sparsity of the projection vector β j in (14) , λ4 effects the sparsity

of the projection vector γ in (10) . β j and γ became more sparse

with the larger λ2, j and λ4 . In order to reduce complexity, λ2, j was

defined to be a unified value as λ2 . The performances of different

λ2 and λ4 are shown in Fig. 4 . As seen from Fig. 4 , classification

accuracy is not influenced too much by different λ2 and λ4 . As a

result, we chose λ = 50 and λ = 50 . 
2 4 

Fig. 3. The selection of k . The vertical axis is the normalized singular value. The horizont

and the selected rank k q is marked by ‘ ∗ ’, ‘ •’, ‘ � ’, ‘ � ’ respectively. 
In order to validate the performance of the extracted features

i.e. the extracted SPCs) and the proposed classifiers, here we ran-

omly selected 50 AD subjects and 50 HC subjects as testing sam-

les, and the rest as training samples. Correlation coefficients be-

ween different parameters (volume of GM, clinical MMSE score,

 2 norm of SPCs of test samples || y te || 
2 and identification ratio

c ) of Hippocampus are shown in Table 2 . It is noticeable from

able 2 that || y te || 
2 shows high correlation with the volume of GM,

hich implies that the extracted SPCs for this compartment reflect

he volume changes of the Hippocampus. Furthermore, from Fig. 5 ,

e can see that || y te || 
2 has shown better performance than the vol-

me of GM in AD identification. Thus, it is reasonable to use || y te || 
2 

s sparse features in AD identification. 

Finally, based on the extracted features, the classification per-

ormance between SVM-based classifiers and EN-based classifiers

i.e. EN-ORI, EN-SPC and EN-ROC) were compared in Tables 3–5 .

n this work, for SVM-based classifers, Gaussian kernel (i.e. SVM-

) and Linear kernel (i.e. SVM-L) functions were used to com-

ute Gram matrix in SVM training procedure separately. As seen

rom Tables 3–5 , EN-ROC classifier shows the highest classification
al axis is the singular value index of the specified ROIs for different compartments 
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Fig. 4. Performance comparison with different λ2 and λ4 . (a) Classification accuracy of using different λ2 . (b) Classification accuracy of using different λ4 . 

Fig. 5. ROC curve of different parameters for Hippocampus. The AUC for the volume 

of GM is 0.667, and for the extracted SPCs || y te || 
2 is 0.792, and for the identification 

ratio ρc is 0.952. 

Table 4 

Classification results of different classifiers–TPR. (Boldface de- 

notes the highest classification ratio in each ROIs.). 

ROIs TPR 

SVM-G SVM-L EN-ORI EN-SPC EN-ROC 

Amyg 0.742 0.746 0.778 0.690 0.707 

Hippo 0.849 0.863 0.884 0.864 0.929 

ParaH 0.811 0.819 0.867 0.834 0.847 

AHP 0.849 0.863 0.910 0.868 0.880 

Caud 0.747 0.766 0.820 0.747 0.791 

Put 0.680 0.690 0.687 0.651 0.748 

Thal 0.756 0.710 0.693 0.731 0.786 

Fusif 0.642 0.790 0.639 0.592 0.741 

All 0.818 0.850 0.892 0.874 0.857 

a  

p  

t

 

a  

c  

t  

v  

Table 5 

Classification results of different classifiers–FPR. (Boldface de- 

notes the highest classification ratio in each ROIs.). 

ROIs 1-FPR 

SVM-G SVM-L EN-ORI EN-SPC EN-ROC 

Amyg 0.725 0.753 0.674 0.708 0.757 

Hippo 0.841 0.848 0.805 0.880 0.850 

ParaH 0.834 0.871 0.788 0.848 0.886 

AHP 0.837 0.858 0.780 0.868 0.891 

Caud 0.692 0.725 0.665 0.700 0.723 

Put 0.678 0.737 0.651 0.710 0.681 

Thal 0.680 0.747 0.654 0.703 0.695 

Fusif 0.583 0.553 0.561 0.703 0.609 

All 0.862 0.828 0.749 0.807 0.867 

t  

C  

t

 

t  

c  

c  

t  

E  
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ccuracy in most of ROIs, SVM-L, SVM-G and EN-SPC show better

erformance than EN-ORI, and SVM-L shows better performance

han SVM-G for the SVM-based classifiers. 

With TPR and FPR be considered, EN-ROC provides better bal-

nce between classification accuracy, TPR and FPR than other three

lassifiers. Even though the EN-ORI gives the most highest TPRs,

hose FPRs are higher too. The main reason is that the projection

ector η in (8) is a relatively rough estimation for class labels while
est sample in (10) is represented by the SPCs of training samples.

onsidering these results, we chose EN-ROC as classifier after fea-

ure extraction in the following experiments. 

From Table 2 and Fig. 5 , we can see that the identification ra-

io ρc proposed in EN-ROC classifier shows higher correlation with

linical MMSE parameter and better performance in AD identifi-

ation than traditional parameter, i.e. volume of GM. It means that

he proposed compartmental sparse feature extraction method and

N-ROC classifier are effective and robust in identification between

D and HC with the dataset from different scanners. 

. Discussion 

First, we investigated the effects of feature dimension on classi-

cation accuracy. The proposed method has been implemented in

ATLAB R2014a, running on a computer with Intel Quad Core i5

t 3.4 GHz and 8 GB of RAM. From Fig. 6 , we can see that the pro-

osed compartmental feature dimension estimation method pro-

ides comparable classification performance compared with preset

xed values of k = 50 , 80 , but their computing time is much longer

han the proposed method. Considering the classification accuracy

nd computing time, we can see that the proposed method esti-

ates the reasonable feature dimensions compartmentally for the

ollowing feature extraction and provides a higher computational

fficiency for classification. 

Secondly, we investigated the convergence of SPCA. SPCA was

sed to extract the SPCs on the Hippocampus image data, where
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Fig. 6. Performance comparison with different feature dimensions. (a) Comparison of classification accuracy for different ROIs with different feature dimensions. (b) Relative 

computing time with different feature dimensions. Here, the longest training time is nearly 2 minutes/ROI for 310 samples. 

Fig. 7. The convergence of SPCA for Hippocampus image data. 

Table 6 

Feature dimensions after dimensionality reduction using different 

feature extraction methods. 

SPCA PCA LDA SPCA PCA LDA 

Amgy 13 310 71 Caud 25 310 60 

Hippo 27 310 76 Put 18 310 70 

ParaH 23 310 81 Thal 15 310 66 

AHP 32 310 80 Fusif 31 310 92 

All 87 310 116 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The classification accuracy of three feature extraction methods with EN-ROC 

classifier. 
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the image dimension is 17545 ( = 121 × 145 ). The learning curves

is shown in Fig. 7 , where 50 nonzero variables were selected from

17,545 variables randomly. As seen from Fig. 7 , the SPCA is con-

verged within 40 iterative steps. Then, without loss of generality,

the iterative step of SPCA was set as 100 in our experiments. 

Finally, we compared the performance of feature extraction be-

tween SPCA and other feature extraction methods. Compared with

SPCA, PCA and LDA are all linear feature dimensionality reduction

methods, which are popular feature extraction methods in machine

learning. The feature dimensions of original sample data is 17545.

After feature dimensionality reduction using SPCA, PCA and LDA

respectively, Table 6 shows that SPCA and LDA only reserve 0.5% or
ess of the original feature dimensions while PCA still retains the

ample size ( n = 310 ) as feature dimensions. Based on the compar-

son results between four classifiers in Tables 3–5 , we used EN-ROC

s classifier after feature extraction procedure. As Fig. 8 shows, fea-

ures extracted by PCA and SPCA perform about 10% better than

hose extracted by LDA. The identification accuracy of PCA or SPCA

s over 15% higher than LDA in AHP and All GM ROIs. From Fig. 8 ,

e also find that PCA performs 3.4% better than SPCA on average,

hich may be related to the information loss in sparsity. Espe-

ially, for some small ROIs (such as Amygdala), their local features

an be protected well using compartmental feature dimension es-

imation method as shown in Fig. 6 while some information may

e lost due to sparsity. This point is illustrated in Fig. 9 , which

s the average result of 50 times Monte-Carlo simulations. During

ach Monte-Carlo simulation, we used the volumes of 47 ROIs as

ariables for PCA and SPCA methods. And we hope some distinct

OIs can be derived as important variables for AD identification

sing feature extraction methods. In Fig. 9 , the first five PCs using

CA method together explain 96.9% of the total variance, i.e. PCA

eserves 96.9% energy of original data, while SPCA only reserves
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Fig. 9. The first five PCs and SPCs by PCA and SPCA respectively. (a) PCA. (b) SPCA. The vertical axes of (a) and (b) represent PCs values and SPCs values respectively. The 

number 1 ~ 47 in the horizontal axis in (a) represent 47 ROIs, which include 45 derived AAL ROIs and 2 combined ROIs (i.e. AHP and whole cerebral GM). The number 1 ~ 25 

in the horizontal axis in (b) represent 25 selected ROIs using SPCA method. The first selected 9 ROIs names and the corresponding volume-based classification accuracy are 

listed in (b). 
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hat of 32.9% with the first five SPCs. However, as what has been

xplained in Section 2 , it is difficult for PCA to interpret the de-

ived PCs while SPCA has the ability of group-variables selection.

e can see from Fig. 9 that SPCA selected some important ROIs

or AD identification while PCA cannot do that. For SPCA method,

5 ROIs were selected for AD identification according to analyzing

he extracted SPCs. It is noticeable that some distinct ROIs (such

s Amygdala, Hippocampus, Parahippocampal gyrus and AHP) were

elected as the most important variables for AD identification,

hich is consistent with the clinical experience. More specifically,

hese distinct ROIs are correlated with each other, i.e. the variables

or AD identification are correlated. This indicates that SPCA can

dentify important variables even for correlated variables. 

. Conclusion 

We have presented a compartmental sparse feature extraction

nd classification method for AD identification in this study. The

roposed method has two novel contributions: 1) reasonable fea-

ure dimension estimation with high computational efficiency by

sing the introduced union-of-subspace representation model, and

) compartmental feature extraction and classification by using

PCA combined with EN-ROC classifier. The proposed method im-

roves the automation of feature extraction and the performance

f classification while protecting local features for the specified

OIs of the brain with high computational efficiency. Experimen-

al results show that the extracted feature parameters well de-

cribe the atrophy of ROIs of the brain as clinical parameters but

how better performance in AD identification than clinical param-

ters. That could be useful for doctors finding new feature parame-

ers besides clinical parameters to describe the changes of cerebral

athology and cognitive function in AD patients. In this work, 2-D

ompartmental feature extraction may lose some information for

ome small ROIs due to sparsity (as discussed in Section 4 ), which

ay be a limitation for identifying some small ROIs. In the future

ork, 3-D feature extraction work will be discussed to solve this

roblem. 
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